Lecture 26

Multitape TM




Multi@e T™

 TM with more than one tape.

» Each tape has its own tape head.
» Each tape is independent.
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2-Tape Turing Machine
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Example of 2—Tape Turing Machine
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Theorem:

For any 2-tape TM T, there exists a single-
tape TM M such that for any string o in X":

if T halts on o with B on its tape, then M halts
on o with p on its tape, and

if 7" does not halt on o, then M does not halt on
.



How 1-tape TM simulates 2-tape TM

O

» Marking the position of each tape head in the
content of the tape

» Encode content of 2 tapes on 1 tape

When to convert 1-tape symbol into 2-tape symbol

» Construct 1-tape TM mmuiatmg a transition 1n 2-

tape TM

» Convert the encoding of 2-tape symbols back to 1-
tape symbols




Encoding 2 tapes in 1 tape

O

» New alphabet contains:
o old alphabet
o encoding of a symbol on tape 1 and a symbol on tape 2

o encoding of a symbol on tape 1 pointed by its tape head and a
symbol on tape 2

o encoding of a symbol on tape 1 and a symbol on tape 2 pointed by
its tape head

o encoding of a symbol on tape 1 pointed bg its tape head and a
symbol on tape 2 pointed by its tape hea




How the tape content is changed

O




Tape format

O




Simulating transitions in 2-tape TM in 1-tape TM

O

T_tape1(a,b,,d,)

T_tape2 (a,,b,,d.)
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cleanup
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Equivalence of 2-tape TM and single-tape TM

O
Proof:

Let T=(Q, X, T,09,s) bea2-tape TM.
We construct a 1-tape TM M=(K, 2, I"’, &', s’) such that
o I”=T"u{clab)l abarein 'U{A}} U {c(a,b)| a,b are
in ['U{A}} U {c(a,b)la,b are in 'U{A}} U {c(a,b)la,b
arein 'U{A}} U {#)}
We need to prove that:

o 1f T halts on a with output B, then M halts on a with output
B, and

o 1t T does not halt on o, then M does not halt on a




If T loops, then M loops.

If T hangs in a state p, M hangs somewhere from p to
the next state.



